If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10k^2-20k-80=0
a = 10; b = -20; c = -80;
Δ = b2-4ac
Δ = -202-4·10·(-80)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-60}{2*10}=\frac{-40}{20} =-2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+60}{2*10}=\frac{80}{20} =4 $
| 28-2Z+22-2x+28-2Z=22 | | 9m^2-18m+8=0 | | -4/8x=-18 | | 5x=1+2x | | 3x3x-8=32 | | 11.4=3p-1.2 | | 2x/4=3x+0 | | 3x.3x-4-4=32 | | -4=y/14 | | (x+7)/12=-5/8 | | 6x2-8=32 | | 3(20)+y=90 | | 5/4x-2=1/4x+19 | | 3x-43x-4=34 | | (19x-3)=(9x-2) | | 3(x+9)-2=35 | | 50/20=x. | | 4^4x-4=256 | | -2(-x-1)=(5+x) | | Y=2v^2+12v+18 | | 4(4-x)+5=13-6x | | X-7/5x+1=x+5/x | | 6+2(x+1=8x | | 211=6(4-8m)-5 | | 180=(4x+20)(x-10) | | x+35=22•2 | | 2x=600-x | | 12(x-5)=-(x-30) | | 2÷x=-5-28 | | 18x-3=-5x+13 | | -5(8m-3)=0 | | x+35=22x2 |